API Reference
Complete reference for all ForecastAPI endpoints, parameters, and response formats.
Base URL
https://forecastapi.com/v1
Authentication
Bearer YOUR_API_KEY
Endpoints
Generate Forecast
POST
/forecast
Generate forecasts for your time series data with automatic model selection.
Request Body
{
"data": [
{"date": "2024-01", "value": 120},
{"date": "2024-02", "value": 135},
{"date": "2024-03", "value": 155}
],
"periods": 6,
"frequency": "M",
"data_type": "sales",
"confidence_level": 0.95
}
Parameters
Parameter | Type | Required | Description |
---|---|---|---|
data | array | Yes | Array of time series data points with date and value |
periods | integer | Yes | Number of forecast periods to generate (1-24) |
frequency | string | Yes | Data frequency: D, W, M, Q, Y, H |
data_type | string | No | Data type for optimized model selection. Default: "sales" |
confidence_level | float | No | Confidence level for intervals (0.8-0.99). Default: 0.95 |
Data Types
Specialized Types
Support intermittent demand patterns:
"sales"
- Sales data"demand"
- Demand forecasting"inventory"
- Inventory levels
Generic Types
Use standard forecasting methods:
"web_traffic"
- Website analytics"cpu_usage"
- System metrics"revenue"
- Financial data
Response
{
"forecast": [
{
"date": "2024-04",
"value": 168.5,
"lower": 162.3,
"upper": 174.7
},
{
"date": "2024-05",
"value": 175.2,
"lower": 168.1,
"upper": 182.3
}
],
"method": "exponential_smoothing",
"confidence": 0.95,
"analysis": {
"pattern_type": "regular",
"trend": "increasing",
"seasonality": "none_detected",
"characteristics": {
"total_periods": 12,
"non_zero_events": 12,
"mean_value": 142.5,
"coefficient_of_variation": 0.23
}
},
"performance": {
"response_time_ms": 287,
"model_selection_time_ms": 45
}
}
Response Fields
Field | Type | Description |
---|---|---|
forecast | array | Array of forecast periods with values and confidence intervals |
method | string | Forecasting method that was automatically selected |
confidence | float | Confidence level used for prediction intervals |
analysis | object | Data pattern analysis and characteristics |
performance | object | API performance metrics |
Error Responses
HTTP Status Codes
400
Bad Request
Invalid request parameters or malformed JSON
401
Unauthorized
Invalid or missing API key
429
Too Many Requests
Rate limit exceeded
500
Internal Server Error
Server error during forecast generation
Error Response Format
{
"error": {
"code": "invalid_data_format",
"message": "Data array must contain at least 3 data points",
"details": {
"received_points": 2,
"minimum_required": 3
}
}
}